A Proposal for new Evaluation Metrics and Result Visualization Technique for Sentiment Analysis Tasks

Francisco J. Valverde-Albacete¹ Jorge Carrillo-de-Albornoz¹ Carmen Peláez-Moreno²

> ¹NLP & IR group, Dep. Lenguajes y Sistemas Informáticos UNED, Spain

> > ²Dept. Teoría de la Señal y Comms. Universidad Carlos III de Madrid

24/09/2013/ CLEF 2013

Valverde, Carrillo & Peláez (UNED, UC3M)

A proposal for new Eval Metrics...

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

Setting the scene...

Confusion matrix or contingency table of a classifier.

- $V_X = \{x_i\}_{i=1}^k$ and $V_Y = \{y_j\}_{j=1}^m$ be sets of input and output class *identifiers*.
- Basic event: "presenting a pattern of input class x_i to the classifier to obtain output class identifier y_j," (X = x_i, Y = y_j).
- N iterated experiments to obtain a count matrix N_{XY} where

$$N_{XY}(x_i, y_j)$$

counts the ocurrrences of the joint event.

A very old question...

What can be said about the performance of multi-class classifiers from their confusion matrices?

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Some examples

$$a = \begin{bmatrix} 15 & 0 & 5 \\ 0 & 15 & 5 \\ 0 & 0 & 20 \end{bmatrix} \qquad b = \begin{bmatrix} 16 & 2 & 2 \\ 2 & 16 & 2 \\ 1 & 1 & 18 \end{bmatrix} \qquad c = \begin{bmatrix} 1 & 0 & 4 \\ 0 & 1 & 4 \\ 1 & 1 & 48 \end{bmatrix}$$
$$d = \begin{bmatrix} 15 & 0 & 0 \\ 0 & 18 & 0 \\ 0 & 0 & 27 \end{bmatrix} \qquad e = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 57 \end{bmatrix} \qquad f = \begin{bmatrix} 0 & 0 & 5 \\ 0 & 0 & 5 \\ 0 & 0 & 50 \end{bmatrix}$$

Figure : Examples of synthetic confusion matrices with assorted behavior: *a*, *b* and *c*, *d* a matrix whose marginals tend towards uniformity, *e* a matrix whose marginals tend to Kronecker's delta and *f* the confusion matrix of a majority classifier.

The problem with accuracy...

Accuracy is the fraction of correct guesses.

It is well-understood, but suffers from...

The Acccuracy paradox

A higher accuracy is not necessarily an indicator of higher classifier performance.

Our plan is to correct accuracy by information-theoretic means.

• So we first transform counts into a joint probability:

$$P_{XY}(x,y) \equiv P_{XY}^{\mathsf{MLE}}(x,y) \approx \frac{N_{XY}(x,y)}{\sum_{x,y} N_{XY}(x,y)}$$
(1)

A plethora of measures of performance

Information-theoretic measures (13+)

Mutual information (a similarity)

$$MI_{P_{XY}} = \sum_{x,y} P_{X,Y}(x,y) \log \frac{P_{X,Y}(x,y)}{P_X(x)P_Y(y)}$$

• Variation of Information (a dissimilarity)

$$VI_{P_{XY}} = H_{P_{X|Y}} + H_{P_{Y|X}}.$$

Valverde, Carrillo & Peláez (UNED, UC3M) A proposal for new Eval Me

(4) (5) (4) (5)

< 6 b

Entropies related to P_{XY} ¹

Figure : Extended entropy diagram related to a bivariate distribution.

$$H_{P_{XY}} = H_{P_{X|Y}} + H_{P_{Y|X}} + MI_{P_{XY}}$$

$$H_{P_X \cdot P_Y} = MI_{P_{XY}} + H_{P_{XY}}$$

$$H_{U_X \cdot U_Y} = \Delta H_{P_X \cdot P_Y} + H_{P_X \cdot P_Y}$$

$$(2)$$

¹Valverde-Albacete, F. J., Peláez-Moreno, C., 2010. Two information-theoretic tools to

Valverde, Carrillo & Peláez (UNED, UC3M)

The Balance equations

Adding the equations in (2) reads...

$$\begin{aligned} H_{U_{XY}} &= \Delta H_{P_X \cdot P_Y} + 2MI_{P_{XY}} + VI_{P_{XY}} \\ 0 &\leq \Delta H_{P_X \cdot P_Y}, 2MI_{P_{XY}}, VI_{P_{XY}} \leq H_{U_{XY}} \end{aligned} .$$

By normalizing in $H_{U_{XY}} = H_{U_X} + H_{U_Y} = \log k + \log p$,

$$\begin{split} 1 &= \Delta H'_{P_X \cdot P_Y} + 2MI'_{P_{XY}} + VI'_{P_{XY}} \\ 0 &\leq \Delta H'_{P_X \cdot P_Y}, 2MI'_{P_{XY}}, VI'_{P_{XY}} \leq 1 \; . \end{split}$$

This is the 2-simplex in normalized space!

$$F_{XY}(P_{XY}) = [\Delta H'_{P_X \cdot P_Y}, 2MI'_{P_{XY}}, VI'_{P_{XY}}]$$

Valverde, Carrillo & Peláez (UNED, UC3M)

< ロ > < 同 > < 回 > < 回 >

The interpretation of Entropy Triangles

Figure : Schematics on how to interpret the zones in the entropy triangle.

Valverde, Carrillo & Peláez (UNED, UC3M)

A proposal for new Eval Metrics...

24/09/2013, CLEF 2013 8 / 22

From the 2-simplex to the De Finetti entropy diagrams

Figure : The 2-simplex in three-dimensional, normalized entropy space $[\Delta H'_{P_X,P_Y}, VI'_{P_{XY}}, 2MI'_{P_{XY}}]$

Figure : The de Finetti entropy diagram or entropy triangle, a projection of the 2-simplex onto a two-dimensional space. Example with synthetic data in previous slide.

1st idea: the Split Entropy Diagram

We can rearrange the areas into a diagram like...

Figure : Split entropy diagram related to a bivariate distribution.

Valverde, Carrillo & Peláez (UNED, UC3M)

A proposal for new Eval Metrics...

24/09/2013, CLEF 2013 11 / 22

H N

Split balance equations

Some of the equations in (2) can be split or dissociated...

$$H_{U_{XY}} = H_{U_X} + H_{U_Y}$$
$$H_{P_X P_Y} = H_{P_X} + H_{P_Y}$$
$$\Delta H_{P_X P_Y} = \Delta H_{P_X} + \Delta H_{P_Y}$$
(3)

with
$$\Delta H_{P_X} = H_{U_X} - H_{P_X}$$
 and $\Delta H_{P_Y} = H_{U_Y} - H_{P_Y}$.

Whence we can split the overall balance equation...

$$\begin{aligned} H_{U_X} &= \Delta H_{P_X} + MI_{P_{XY}} + H_{P_{X|Y}} & H_{U_Y} = \Delta H_{P_Y} + MI_{P_{XY}} + H_{P_{Y|X}} \\ 0 &\leq \Delta H_{P_X}, MI_{P_{XY}}, H_{P_{X|Y}} \leq H_{U_X} & 0 \leq \Delta H_{P_Y}, MI_{P_{XY}}, H_{P_{Y|X}} \leq H_{U_Y} \end{aligned}$$

3

2nd Idea: intuitions from the perplexity of language models

Perplexity is a language-modelling measure

$$PP = 2^{H(LM)}$$

- It represents the expected no. of different words the LM can "see", if they are considered equiprobable, e.g. for a LM of $|V| = 50\,000$ we may have $PP \approx 350$.
- It also allows us an estimate of the expected predictive accuracy of the Language model:

$$a'(LM) \approx \frac{1}{PP}$$

< ロ > < 同 > < 回 > < 回 >

Perplexity and its transformation through classifiers.

The same procedure can be applied to classifiers:

Figure : Perplexity transformation through a classifier.

Valverde, Carrillo & Peláez (UNED, UC3M)

A proposal for new Eval Metrics...

イロト イヨト イヨト イヨト

Interesting quantities...

The effective perplexity of the data is $k_X = k/\delta_X$

- It is inherent to the task corpus.
- It is an analogue for the perplexity for LM.
- It describes how many different equiprobable classes are there in the corpus.

$$1 \le k_X \le k$$
 since $\Delta H_X \ge 0$

• Note that if $k > k_X \approx 1$ then your problem is a *detection problem*.

The remanent perplexity of the data is $k_{X|Y} = k_X/\mu_{XY}$

• It is the perplexity when all the information about *Y* is "taken" from *X*.

Finally the entropy modified accuracy (EMA) is

$$a'(P_{XY}) = 1/k_{X|Y}$$

Valverde, Carrillo & Peláez (UNED, UC3M)

The Normalized Information Transfer(NIT) factor

The information transfer factor is $\mu_{XY} = 2^{MI_{P_{XY}}}$.

It measures the effectiveness of the classifier!

 $1 \le \mu_{XY} \le k$

- When the classifier learns nothing then $MI_{P_{XY}} = 0$ so $\mu_{XY} = 1$.
- If the input distribution of data is balanced and the classifier is the best possible then μ_{XY} = k.

The Normalized Information Transfer factor is $q(P_{XY}) = \mu_{XY}/k$

• It measures how much the classifier reduces perplexity, $1/k < q(P_{XY}) < 1$

• NIT is covariant with *MI_{Pxy}* so rankings can be read from the ET!

3

イロト 不得 トイヨト イヨト

The TASS tasks

Table : Distribution of tweets per polarity class in the TASS corpus. The training sets are much more balanced.

TASS5	P+	Р	NEU	Ν	N+	NONE	TOTAL	k_X
training	1 764	1019	610	1 221	903	1 702	7219	5.6
testing	20745	1 488	1 305	11 287	4 557	21 4 16	60 798	4.1
TASS3								
training		2783	610	2124		1 702	7219	3.6
testing		22 233	1 305	15844		21 4 16	60 798	3.2

イロト イヨト イヨト イヨト

TASS3 vs. TASS5 results

Figure : Entropy triangles for the TASS Sentiment Analysis tasks for 3 (a) and 5 (b) polarity degrees. Colormap correlates with accuracy.

A proposal for new Eval Metrics...

3 > 4 3

RepLab 2012 data

Table : Distribution of tweets per polarity class in the RepLab 2012corpus. Effective perplexities are very different for training and testing.

Dataset	P	NEU	Ν	TOTAL	k _X
training	885	550	81	1 516	2.32
testing	1 625	1 488	1 241	4 354	2.98

< 回 > < 回 > < 回 >

RepLab 2012 results

Figure : Entropy triangles for the whole population of systems presented to the RepLab2012 Reputation Analysis. The colormap encodes accuracy. The task is not solved, even as a collective effort, taking the NIT as the criterion.

Valverde, Carrillo & Peláez (UNED, UC3M)

A proposal for new Eval Metrics...

24/09/2013, CLEF 2013 20 / 22

Summary

A new set of tools for assessing the performance of multi-class classifiers in terms of entropic measures:

- The de Finetti entropy diagram (or Entropic Triangle) shows that there exists a coupling among,
 - a term related to the uniformness of the marginal distributions $(\Delta H'_{P_X \cdot P_Y})$,
 - a dissimilarity (Variation of Information) and
 - a similarity (Mutual Information) between the input and output experimental descriptions.
- Modified accuracy provides a more pessimistic (realistic?) estimate of classifier performance.
- The Normalized Information Tranfers factor gives an estimate of the effectiveness of the learning process.

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Acknowledgments

- FJVA and JCdA are supported by EU FP7 project LiMoSINe (contract 288024).
- CPM has been partially supported by the Spanish Government-Comisión Interministerial de Ciencia y Tecnología project TEC2011-26807 for this paper.

A (10) A (10)